Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Nonclassical spectral asymptotics and Dixmier traces: From circles to contact manifolds (1606.00413v1)

Published 1 Jun 2016 in math.SP, math.FA, and math.OA

Abstract: We consider the spectral behavior and noncommutative geometry of commutators $[P,f]$, where $P$ is an operator of order $0$ with geometric origin and $f$ a multiplication operator by a function. When $f$ is H\"{o}lder continuous, the spectral asymptotics is governed by singularities. We study precise spectral asymptotics through the computation of Dixmier traces; such computations have only been considered in less singular settings. Even though a Weyl law fails for these operators, and no pseudo-differential calculus is available, variations of Connes' residue trace theorem and related integral formulas continue to hold. On the circle, a large class of non-measurable Hankel operators is obtained from H\"older continuous functions $f$, displaying a wide range of nonclassical spectral asymptotics beyond the Weyl law. The results extend from Riemannian manifolds to contact manifolds and noncommutative tori.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.