Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence and quasi-optimality of adaptive finite element methods for harmonic forms (1605.08813v2)

Published 27 May 2016 in math.NA

Abstract: Numerical computation of harmonic forms (typically called harmonic fields in three space dimensions) arises in various areas, including computer graphics and computational electromagnetics. The finite element exterior calculus framework also relies extensively on accurate computation of harmonic forms. In this work we study the convergence properties of adaptive finite element methods (AFEM) for computing harmonic forms. We show that a properly defined AFEM is contractive and achieves optimal convergence rate beginning from any initial conforming mesh. This result is contrasted with related AFEM convergence results for elliptic eigenvalue problems, where the initial mesh must be sufficiently fine in order for AFEM to achieve any provable convergence rate.

Summary

We haven't generated a summary for this paper yet.