Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Local law and Tracy-Widom limit for sparse random matrices (1605.08767v2)

Published 27 May 2016 in math.PR, math-ph, and math.MP

Abstract: We consider spectral properties and the edge universality of sparse random matrices, the class of random matrices that includes the adjacency matrices of the Erdos-Renyi graph model $G(N,p)$. We prove a local law for the eigenvalue density up to the spectral edges. Under a suitable condition on the sparsity, we also prove that the rescaled extremal eigenvalues exhibit GOE Tracy-Widom fluctuations if a deterministic shift of the spectral edge due to the sparsity is included. For the adjacency matrix of the Erdos-Renyi graph this establishes the Tracy-Widom fluctuations of the second largest eigenvalue for $p\gg N{-2/3}$ with a deterministic shift of order $(Np){-1}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.