Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the numerical radius of a quaternionic normal operator (1605.07269v2)

Published 24 May 2016 in math.SP

Abstract: We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternionic compact normal operators.. Finally, we show that every quaternionic compact operator is norm attaining and prove the Lindenstrauss theorem on norm attaining operators, namely, the set of all norm attaining quaternionic operators is norm dense in the space of all bounded quaternionic operators defined between two quaternionic Hilbert spaces.

Summary

We haven't generated a summary for this paper yet.