2000 character limit reached
Sparse Identification of Nonlinear Dynamics with Control (SINDYc) (1605.06682v1)
Published 21 May 2016 in math.DS
Abstract: Identifying governing equations from data is a critical step in the modeling and control of complex dynamical systems. Here, we investigate the data-driven identification of nonlinear dynamical systems with inputs and forcing using regression methods, including sparse regression. Specifically, we generalize the sparse identification of nonlinear dynamics (SINDY) algorithm to include external inputs and feedback control. This method is demonstrated on examples including the Lotka-Volterra predator--prey model and the Lorenz system with forcing and control. We also connect the present algorithm with the dynamic mode decomposition (DMD) and Koopman operator theory to provide a broader context.