Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Selection of the Optimal Local Feature Detector (1605.06094v1)

Published 19 May 2016 in cs.CV

Abstract: A large number of different feature detectors has been proposed so far. Any existing approach presents strengths and weaknesses, which make a detector optimal only for a limited range of applications. A tool capable of selecting the optimal feature detector in relation to the operating conditions is presented in this paper. The input images are quickly analyzed to determine what type of image transformation is applied to them and at which amount. Finally, the detector that is expected to obtain the highest repeatability under such conditions, is chosen to extract features from the input images. The efficiency and the good accuracy in determining the optimal feature detector for any operating condition, make the proposed tool suitable to be utilized in real visual applications. %A large number of different feature detectors has been proposed so far. Any existing approach presents strengths and weaknesses, which make a detector optimal only for a limited range of applications. A large number of different local feature detectors have been proposed in the last few years. However, each feature detector has its own strengths ad weaknesses that limit its use to a specific range of applications. In this paper is presented a tool capable of quickly analysing input images to determine which type and amount of transformation is applied to them and then selecting the optimal feature detector, which is expected to perform the best. The results show that the performance and the fast execution time render the proposed tool suitable for real-world vision applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.