Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces (1605.05720v3)

Published 18 May 2016 in math.SP, math-ph, math.DS, and math.MP

Abstract: We present a quantum ergodicity theorem for fixed spectral window and sequences of compact hyperbolic surfaces converging to the hyperbolic plane in the sense of Benjamini and Schramm. This addresses a question posed by Colin de Verdi`{e}re. Our theorem is inspired by results for eigenfunctions on large regular graphs by Anantharaman and the first-named author. It applies in particular to eigenfunctions on compact arithmetic surfaces in the level aspect, which connects it to a question of Nelson on Maass forms. The proof is based on a wave propagation approach recently considered by Brooks, Lindenstrauss and the first-named author on discrete graphs. It does not use any microlocal analysis, making it quite different from the usual proof of quantum ergodicity in the large eigenvalue limit. Moreover, we replace the wave propagator with renormalised averaging operators over discs, which simplifies the analysis and allows us to make use of a general ergodic theorem of Nevo. As a consequence of this approach, we require little regularity on the observables.

Summary

We haven't generated a summary for this paper yet.