Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Semantic Spaces (1605.04238v1)

Published 13 May 2016 in cs.CL

Abstract: Any natural language can be considered as a tool for producing large databases (consisting of texts, written, or discursive). This tool for its description in turn requires other large databases (dictionaries, grammars etc.). Nowadays, the notion of database is associated with computer processing and computer memory. However, a natural language resides also in human brains and functions in human communication, from interpersonal to intergenerational one. We discuss in this survey/research paper mathematical, in particular geometric, constructions, which help to bridge these two worlds. In particular, in this paper we consider the Vector Space Model of semantics based on frequency matrices, as used in Natural Language Processing. We investigate underlying geometries, formulated in terms of Grassmannians, projective spaces, and flag varieties. We formulate the relation between vector space models and semantic spaces based on semic axes in terms of projectability of subvarieties in Grassmannians and projective spaces. We interpret Latent Semantics as a geometric flow on Grassmannians. We also discuss how to formulate G\"ardenfors' notion of "meeting of minds" in our geometric setting.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.