Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting the Bron-Kerbosch Algorithm for Enumerating Maximal Cliques in Temporal Graphs (1605.03871v2)

Published 12 May 2016 in cs.DS, cs.CC, and cs.SI

Abstract: Dynamics of interactions play an increasingly important role in the analysis of complex networks. A modeling framework to capture this are temporal graphs which consist of a set of vertices (entities in the network) and a set of time-stamped binary interactions between the vertices. We focus on enumerating delta-cliques, an extension of the concept of cliques to temporal graphs: for a given time period delta, a delta-clique in a temporal graph is a set of vertices and a time interval such that all vertices interact with each other at least after every delta time steps within the time interval. Viard, Latapy, and Magnien [ASONAM 2015, TCS 2016] proposed a greedy algorithm for enumerating all maximal delta-cliques in temporal graphs. In contrast to this approach, we adapt the Bron-Kerbosch algorithm - an efficient, recursive backtracking algorithm which enumerates all maximal cliques in static graphs - to the temporal setting. We obtain encouraging results both in theory (concerning worst-case running time analysis based on the parameter "delta-slice degeneracy" of the underlying graph) as well as in practice with experiments on real-world data. The latter culminates in an improvement for most interesting delte-values concerning running time in comparison with the algorithm of Viard, Latapy, and Magnien.

Citations (37)

Summary

We haven't generated a summary for this paper yet.