Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Oscillation and variation for Riesz transform associated with Bessel operators (1605.01251v1)

Published 4 May 2016 in math.AP

Abstract: Let $\lambda>0$ and $\triangle_\lambda:=-\frac{d2}{dx2}-\frac{2\lambda}{x} \frac d{dx}$ be the Bessel operator on $\mathbb R_+:=(0,\infty)$. We show that the oscillation operator $\mathcal{O}(R_{\Delta_{\lambda},\ast})$ and variation operator $\mathcal{V}{\rho}(R{\Delta_{\lambda},\ast})$ of the Riesz transform $R_{\Delta_{\lambda}}$ associated with $\Delta_\lambda$ are both bounded on $Lp(\mathbb R_+, dm_{\lambda})$ for $p\in(1,\,\infty)$, from $L1(\mathbb{R}{+},dm{\lambda})$ to $L{1,\,\infty}(\mathbb{R}{+},dm{\lambda})$, and from $L{\infty}(\mathbb{R}{+},dm{\lambda})$ to $BMO(\mathbb{R}{+},dm{\lambda})$, where $\rho\in (2,\infty)$ and $dm_{\lambda}(x):=x{2\lambda}dx$. As an application, we give the corresponding $Lp$-estimates for $\beta$-jump operators and the number of up-crossing.

Summary

We haven't generated a summary for this paper yet.