Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An evaluation of randomized machine learning methods for redundant data: Predicting short and medium-term suicide risk from administrative records and risk assessments (1605.01116v1)

Published 3 May 2016 in stat.ML and cs.LG

Abstract: Accurate prediction of suicide risk in mental health patients remains an open problem. Existing methods including clinician judgments have acceptable sensitivity, but yield many false positives. Exploiting administrative data has a great potential, but the data has high dimensionality and redundancies in the recording processes. We investigate the efficacy of three most effective randomized machine learning techniques random forests, gradient boosting machines, and deep neural nets with dropout in predicting suicide risk. Using a cohort of mental health patients from a regional Australian hospital, we compare the predictive performance with popular traditional approaches clinician judgments based on a checklist, sparse logistic regression and decision trees. The randomized methods demonstrated robustness against data redundancies and superior predictive performance on AUC and F-measure.

Citations (8)

Summary

We haven't generated a summary for this paper yet.