Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riemann-Roch for homotopy invariant K-theory and Gysin morphisms (1605.00980v1)

Published 3 May 2016 in math.KT and math.AG

Abstract: We prove the Riemann-Roch theorem for homotopy invariant $K$-theory and projective local complete intersection morphisms between finite dimensional noetherian schemes, without smoothness assumptions. We also prove a new Riemann-Roch theorem for the relative cohomology of a morphism. In order to do so, we construct and characterize Gysin morphisms for regular immersions between cohomologies represented by spectra (examples include homotopy invariant $K$-theory, motivic cohomology, their arithmetic counterparts, real absolute Hodge and Deligne-Beilinson cohomology, rigid syntomic cohomology, mixed Weil cohomologies) and use this construction to prove a motivic version of the Riemann-Roch.

Summary

We haven't generated a summary for this paper yet.