Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Risk Scoring for Critical Care Patients using Mixtures of Gaussian Process Experts (1605.00959v1)

Published 3 May 2016 in cs.LG and stat.ML

Abstract: We develop a personalized real time risk scoring algorithm that provides timely and granular assessments for the clinical acuity of ward patients based on their (temporal) lab tests and vital signs. Heterogeneity of the patients population is captured via a hierarchical latent class model. The proposed algorithm aims to discover the number of latent classes in the patients population, and train a mixture of Gaussian Process (GP) experts, where each expert models the physiological data streams associated with a specific class. Self-taught transfer learning is used to transfer the knowledge of latent classes learned from the domain of clinically stable patients to the domain of clinically deteriorating patients. For new patients, the posterior beliefs of all GP experts about the patient's clinical status given her physiological data stream are computed, and a personalized risk score is evaluated as a weighted average of those beliefs, where the weights are learned from the patient's hospital admission information. Experiments on a heterogeneous cohort of 6,313 patients admitted to Ronald Regan UCLA medical center show that our risk score outperforms the currently deployed risk scores, such as MEWS and Rothman scores.

Citations (21)

Summary

We haven't generated a summary for this paper yet.