Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bloom Filters and Compact Hash Codes for Efficient and Distributed Image Retrieval (1605.00957v1)

Published 3 May 2016 in cs.MM and cs.IR

Abstract: This paper presents a novel method for efficient image retrieval, based on a simple and effective hashing of CNN features and the use of an indexing structure based on Bloom filters. These filters are used as gatekeepers for the database of image features, allowing to avoid to perform a query if the query features are not stored in the database and speeding up the query process, without affecting retrieval performance. Thanks to the limited memory requirements the system is suitable for mobile applications and distributed databases, associating each filter to a distributed portion of the database. Experimental validation has been performed on three standard image retrieval datasets, outperforming state-of-the-art hashing methods in terms of precision, while the proposed indexing method obtains a $2\times$ speedup.

Citations (4)

Summary

We haven't generated a summary for this paper yet.