Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cuspidal divisor class groups of non-split Cartan modular curves (1605.00375v1)

Published 2 May 2016 in math.NT

Abstract: I find an explicit description of modular units in terms of Siegel functions for the modular curves $X+_{ns}(pk)$ associated to the normalizer of a non-split Cartan subgroup of level $pk$ where $p\not=2,3$ is a prime. The Cuspidal Divisor Class Group $\mathfrak{C}+_{ns}(pk)$ on $X+_{ns}(pk)$ is explicitly described as a module over the group ring $R = \mathbb{Z}[(\mathbb{Z}/pk\mathbb{Z})*/{\pm 1}]$. In this paper I give a formula involving generalized Bernoulli numbers $B_{2,\chi}$ for $|\mathfrak{C}+_{ns}(pk)|$.

Summary

We haven't generated a summary for this paper yet.