Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructive neural network learning (1605.00079v1)

Published 30 Apr 2016 in cs.LG

Abstract: In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of "constructive neural networks" in approximation theory, we focus on "constructing" rather than "training" feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the proposed method not only overcomes the classical saturation problem for FNN approximation, but also reaches the optimal learning rate when the regression function is smooth, while the state-of-the-art learning rates established for traditional FNNs are only near optimal (up to a logarithmic factor). A series of numerical simulations are provided to show the efficiency and feasibility of CFN via comparing with the well-known regularized least squares (RLS) with Gaussian kernel and extreme learning machine (ELM).

Citations (31)

Summary

We haven't generated a summary for this paper yet.