Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Clustering and Sleep Mode Strategies for Small Cell Networks (1604.08758v1)

Published 29 Apr 2016 in cs.NI, cs.IT, and math.IT

Abstract: In this paper, a novel cluster-based approach for optimizing the energy efficiency of wireless small cell networks is proposed. A dynamic mechanism based on the spectral clustering technique is proposed to dynamically form clusters of small cell base stations. Such clustering enables intra-cluster coordination among the base stations for optimizing the downlink performance through load balancing, while satisfying users' quality-of-service requirements. In the proposed approach, the clusters use an opportunistic base station sleep-wake switching mechanism to strike a balance between delay and energy consumption. The inter-cluster interference affects the performance of the clusters and their choices of active or sleep state. Due to the lack of inter-cluster communications, the clusters have to compete with each other to make decisions on improving the energy efficiency. This competition is formulated as a noncooperative game among the clusters that seek to minimize a cost function which captures the tradeoff between energy expenditure and load. To solve this game, a distributed learning algorithm is proposed using which the clusters autonomously choose their optimal transmission strategies. Simulation results show that the proposed approach yields significant performance gains in terms of reduced energy expenditures up to 40% and reduced load up to 23% compared to conventional approaches.

Citations (17)

Summary

We haven't generated a summary for this paper yet.