Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Multiplicative chaos measures for a random model of the Riemann zeta function (1604.08378v1)

Published 28 Apr 2016 in math.PR and math.NT

Abstract: We prove convergence of a stochastic approximation of powers of the Riemann $\zeta$ function to a non-Gaussian multiplicative chaos measure, and prove that this measure is a non-trivial multifractal random measure. The results cover both the subcritical and critical chaos. A basic ingredient of the proof is a 'good' Gaussian approximation of the induced random fields that is potentially of independent interest.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube