Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Complex martingales and asymptotic enumeration (1604.08305v4)

Published 28 Apr 2016 in math.CO

Abstract: Many enumeration problems in combinatorics, including such fundamental questions as the number of regular graphs, can be expressed as high-dimensional complex integrals. Motivated by the need for a systematic study of the asymptotic behaviour of such integrals, we establish explicit bounds on the exponentials of complex martingales. Those bounds applied to the case of truncated normal distributions are precise enough to include and extend many enumerative results of Barvinok, Canfield, Gao, Greenhill, Hartigan, Isaev, McKay, Wang, Wormald, and others. Our method applies to sums as well as integrals. As a first illustration of the power of our theory, we considerably strengthen existing results on the relationship between random graphs or bipartite graphs with specified degrees and the so-called $\beta$-model of random graphs with independent edges, which is equivalent to the Rasch model in the bipartite case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube