Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Steady states of continuous-time open quantum walks (1604.05652v2)

Published 19 Apr 2016 in quant-ph

Abstract: Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. As shown by the examples in this article, the steady states of CTOQW can be very unusual and complicated even though the underlying graphs are simple. The examples demonstrate that the structure of a graph can affect quantum coherence in CTOQW through a long time run. Precisely, the quantum coherence persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, the quantum coherence will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.