Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A parallel repetition theorem for all entangled games (1604.04340v1)

Published 15 Apr 2016 in quant-ph and cs.CC

Abstract: The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Raz's classical parallel repetition theorem have been proved for many special classes of games. However, for general entangled games no parallel repetition theorem was known. We prove that the entangled value of a two-player game $G$ repeated $n$ times in parallel is at most $c_G n{-1/4} \log n$ for a constant $c_G$ depending on $G$, provided that the entangled value of $G$ is less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated game must converge to 0 for all games whose entangled value is less than 1. Central to our proof is a combination of both classical and quantum correlated sampling.

Citations (23)

Summary

We haven't generated a summary for this paper yet.