Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Equivariant adjusted least squares estimator in two-line fitting model (1604.02928v1)

Published 6 Apr 2016 in stat.ME and math.PR

Abstract: We consider the two-line fitting problem. True points lie on two straight lines and are observed with Gaussian perturbations. For each observed point, it is not known on which line the corresponding true point lies. The parameters of the lines are estimated. This model is a restriction of the conic section fitting model because a couple of two lines is a degenerate conic section. The following estimators are constructed: two projections of the adjusted least squares estimator in the conic section fitting model, orthogonal regression estimator, parametric maximum likelihood estimator in the Gaussian model, and regular best asymptotically normal moment estimator. The conditions for the consistency and asymptotic normality of the projections of the adjusted least squares estimator are provided. All the estimators constructed in the paper are equivariant. The estimators are compared numerically.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube