Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear structures in nonlinear optimal control (1604.01261v1)

Published 5 Apr 2016 in math.OC, cs.SY, math.DS, and nlin.SI

Abstract: We investigate optimal control of dynamical systems which are affine, i.e., linear in control, but nonlinear in state. The control task is to enforce the system state to follow a prescribed desired trajectory as closely as possible, a task also known as optimal trajectory tracking. To obtain well-behaved solutions to optimal control, a regularization term with coefficient $\varepsilon$ must be included in the cost functional. Assuming $\varepsilon$ to be small, we reinterpret affine optimal control problems as singularly perturbed differential equations. Performing a singular perturbation expansion, approximations for the optimal tracking of arbitrary desired trajectories are derived. For $\varepsilon=0$, the state trajectory may become discontinuous, and the control may diverge. On the other hand, the analytical treatment becomes exact. We identify the conditions leading to linear evolution equations. These result in exact analytical solutions for an entire class of nonlinear trajectory tracking problems. The class comprises, among others, mechanical control systems in one spatial dimension and the FitzHugh-Nagumo model with a control acting on the activator.

Summary

We haven't generated a summary for this paper yet.