Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Salem sets and applications to metrical Diophantine approximation (1604.00411v1)

Published 1 Apr 2016 in math.CA

Abstract: Let $Q$ be an infinite subset of $\mathbb{Z}$, let $\Psi: \mathbb{Z} \rightarrow [0,\infty)$ be positive on $Q$, and let $\theta \in \mathbb{R}$. Define $$ E(Q,\Psi,\theta) = { x \in \mathbb{R} : | q x - \theta | \leq \Psi(q) \text{ for infinitely many $q \in Q$} }. $$ We prove a lower bound on the Fourier dimension of $E(Q,\Psi,\theta)$. This generalizes theorems of Kaufman and Bluhm and yields new explicit examples of Salem sets. We give applications to metrical Diophantine approximation, including determining the Hausdorff dimension of $E(Q,\Psi,\theta)$ in new cases. We also prove a higher-dimensional analog of our result.

Summary

We haven't generated a summary for this paper yet.