Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel image thinning through topological operators on shared memory parallel machines (1603.09180v1)

Published 30 Mar 2016 in cs.DC

Abstract: In this paper, we present a concurrent implementation of a powerful topological thinning operator. This operator is able to act directly over grayscale images without modifying their topology. We introduce an adapted parallelization methodology which combines split, distribute and merge (SDM) strategy and mixed parallelism techniques (data and thread parallelism). The introduced strategy allows efficient parallelization of a large class of topological operators including, mainly, {\lambda}-leveling, skeletonization and crest restoring algorithms. To achieve a good speedup, we cared about coordination of threads. Distributed work during thinning process is done by a variable number of threads. Tests on 2D grayscale image (512*512), using shared memory parallel machine (SMPM) with 8 CPU cores (2x Xeon E5405 running at frequency of 2 GHz), showed an enhancement of 6.2 with a maximum achieved cadency of 125 images/s using 8 threads.

Citations (4)

Summary

We haven't generated a summary for this paper yet.