Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Towards Practical Bayesian Parameter and State Estimation (1603.08988v1)

Published 29 Mar 2016 in cs.AI, cs.LG, and stat.ML

Abstract: Joint state and parameter estimation is a core problem for dynamic Bayesian networks. Although modern probabilistic inference toolkits make it relatively easy to specify large and practically relevant probabilistic models, the silver bullet---an efficient and general online inference algorithm for such problems---remains elusive, forcing users to write special-purpose code for each application. We propose a novel blackbox algorithm -- a hybrid of particle filtering for state variables and assumed density filtering for parameter variables. It has following advantages: (a) it is efficient due to its online nature, and (b) it is applicable to both discrete and continuous parameter spaces . On a variety of toy and real models, our system is able to generate more accurate results within a fixed computation budget. This preliminary evidence indicates that the proposed approach is likely to be of practical use.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.