2000 character limit reached
Kadec-1/4 Theorem for Sinc Bases (1603.08762v1)
Published 29 Mar 2016 in math.FA
Abstract: In this paper we show two results. In the first result we consider $\lambda_n-n=\frac{A}{n\alpha}$ for $n\in\mathbb N$; if $\alpha>1/2$ and $0<A<\frac{1}{\pi\sqrt{2 \sqrt{2}\zeta(2\alpha)}}$, the system $\left{\operatorname{sinc}( \lambda_n - t)\right}{n\in\mathbb N}$ is a Riesz basis for $PW{\pi}$. With the second result, we study the stability of $\left{\operatorname{sinc}( \lambda_n - t)\right}{n\in\mathbb Z}$ for $\lambda_n\in\mathbb C$; if $|\lambda_n-n|\leqq L<\frac{1}{\pi}\, \sqrt\frac{3\alpha}{8}$, for all $n\in\mathbb Z$, then ${\operatorname{sinc}(\lambda_n-t)}{n\in\mathbb Z}$ forms a Riesz basis for $PW_{\pi}$. Here $\alpha$ is the Lamb-Oseen constant.