Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

Semantic Regularities in Document Representations (1603.07603v1)

Published 24 Mar 2016 in cs.CL

Abstract: Recent work exhibited that distributed word representations are good at capturing linguistic regularities in language. This allows vector-oriented reasoning based on simple linear algebra between words. Since many different methods have been proposed for learning document representations, it is natural to ask whether there is also linear structure in these learned representations to allow similar reasoning at document level. To answer this question, we design a new document analogy task for testing the semantic regularities in document representations, and conduct empirical evaluations over several state-of-the-art document representation models. The results reveal that neural embedding based document representations work better on this analogy task than conventional methods, and we provide some preliminary explanations over these observations.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.