Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting litigation likelihood and time to litigation for patents (1603.07394v1)

Published 23 Mar 2016 in stat.ML

Abstract: Patent lawsuits are costly and time-consuming. An ability to forecast a patent litigation and time to litigation allows companies to better allocate budget and time in managing their patent portfolios. We develop predictive models for estimating the likelihood of litigation for patents and the expected time to litigation based on both textual and non-textual features. Our work focuses on improving the state-of-the-art by relying on a different set of features and employing more sophisticated algorithms with more realistic data. The rate of patent litigations is very low, which consequently makes the problem difficult. The initial model for predicting the likelihood is further modified to capture a time-to-litigation perspective.

Citations (18)

Summary

We haven't generated a summary for this paper yet.