Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons (1603.06881v1)

Published 22 Mar 2016 in cs.LG, cs.AI, cs.IT, math.IT, and stat.ML

Abstract: We study methods for aggregating pairwise comparison data in order to estimate outcome probabilities for future comparisons among a collection of n items. Working within a flexible framework that imposes only a form of strong stochastic transitivity (SST), we introduce an adaptivity index defined by the indifference sets of the pairwise comparison probabilities. In addition to measuring the usual worst-case risk of an estimator, this adaptivity index also captures the extent to which the estimator adapts to instance-specific difficulty relative to an oracle estimator. We prove three main results that involve this adaptivity index and different algorithms. First, we propose a three-step estimator termed Count-Randomize-Least squares (CRL), and show that it has adaptivity index upper bounded as $\sqrt{n}$ up to logarithmic factors. We then show that that conditional on the hardness of planted clique, no computationally efficient estimator can achieve an adaptivity index smaller than $\sqrt{n}$. Second, we show that a regularized least squares estimator can achieve a poly-logarithmic adaptivity index, thereby demonstrating a $\sqrt{n}$-gap between optimal and computationally achievable adaptivity. Finally, we prove that the standard least squares estimator, which is known to be optimally adaptive in several closely related problems, fails to adapt in the context of estimating pairwise probabilities.

Citations (35)

Summary

We haven't generated a summary for this paper yet.