Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals (1603.04661v2)

Published 15 Mar 2016 in math.PR

Abstract: In this work, we study the normal approximation and almost sure central limit theorems for some functionals of an independent sequence of Rademacher random variables. In particular, we provide a new chain rule that improves the one derived by Nourdin, Peccati and Reinert(2010) and then we deduce the bound on Wasserstein distance for normal approximation using the (discrete) Malliavin-Stein approach. Besides, we are able to give the almost sure central limit theorem for a sequence of random variables inside a fixed Rademacher chaos using the Ibragimov-Lifshits criterion.

Summary

We haven't generated a summary for this paper yet.