Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Front propagation directed by a line of fast diffusion: large diffusion and large time asymptotics (1603.04494v1)

Published 14 Mar 2016 in math.AP

Abstract: The system under study is a reaction-diffusion equation in a horizontal strip, coupled to a diffusion equation on its upper boundary via an exchange condition of the Robin type. This class of models was introduced by H. Berestycki, L. Rossi and the second author in order to model biological invasions directed by lines of fast diffusion. They proved, in particular, that the speed of invasion was enhanced by a fast diffusion on the line, the spreading velocity being asymptotically proportional to the square root of the fast diffusion coefficient. These results could be reduced, in the logistic case, to explicit algebraic computations. The goal of this paper is to prove that the same phenomenon holds, with a different type of nonlinearity, which precludes explicit computations. We discover a new transition phenomenon, that we explain in detail.

Summary

We haven't generated a summary for this paper yet.