Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Grothendieck-type inequality for local maxima (1603.04064v1)

Published 13 Mar 2016 in math.OC and stat.ML

Abstract: A large number of problems in optimization, machine learning, signal processing can be effectively addressed by suitable semidefinite programming (SDP) relaxations. Unfortunately, generic SDP solvers hardly scale beyond instances with a few hundreds variables (in the underlying combinatorial problem). On the other hand, it has been observed empirically that an effective strategy amounts to introducing a (non-convex) rank constraint, and solving the resulting smooth optimization problem by ascent methods. This non-convex problem has --generically-- a large number of local maxima, and the reason for this success is therefore unclear. This paper provides rigorous support for this approach. For the problem of maximizing a linear functional over the elliptope, we prove that all local maxima are within a small gap from the SDP optimum. In several problems of interest, arbitrarily small relative error can be achieved by taking the rank constraint $k$ to be of order one, independently of the problem size.

Citations (14)

Summary

We haven't generated a summary for this paper yet.