Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Probabilistic Models for the (sub)Tree(s) of Life (1603.03705v2)

Published 11 Mar 2016 in math.PR and q-bio.PE

Abstract: The goal of these lectures is to review some mathematical aspects of random tree models used in evolutionary biology to model gene trees or species trees. We start with stochastic models of tree shapes (finite trees without edge lengths), culminating in the $\beta$-family of Aldous' branching models. We next introduce real trees (trees as metric spaces) and show how to study them through their contour, provided they are properly measured and ordered. We then focus on the reduced tree, or coalescent tree, which is the tree spanned by individuals/species alive at the same fixed time. We show how reduced trees, like any compact ultrametric space, can be represented in a simple way via the so-called comb metric. Beautiful examples of random combs include the Kingman coalescent and coalescent point processes. We end up displaying some recent biological applications of coalescent point processes to the inference of species diversification, to conservation biology and to epidemiology.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)