Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 39 TPS Pro
GPT-5 Medium 36 TPS
GPT-5 High 36 TPS Pro
GPT-4o 74 TPS
GPT OSS 120B 399 TPS Pro
Kimi K2 184 TPS Pro
2000 character limit reached

Determination of the edge of criticality in echo state networks through Fisher information maximization (1603.03685v2)

Published 11 Mar 2016 in physics.data-an, cs.LG, and cs.NE

Abstract: It is a widely accepted fact that the computational capability of recurrent neural networks is maximized on the so-called "edge of criticality". Once the network operates in this configuration, it performs efficiently on a specific application both in terms of (i) low prediction error and (ii) high short-term memory capacity. Since the behavior of recurrent networks is strongly influenced by the particular input signal driving the dynamics, a universal, application-independent method for determining the edge of criticality is still missing. In this paper, we aim at addressing this issue by proposing a theoretically motivated, unsupervised method based on Fisher information for determining the edge of criticality in recurrent neural networks. It is proven that Fisher information is maximized for (finite-size) systems operating in such critical regions. However, Fisher information is notoriously difficult to compute and either requires the probability density function or the conditional dependence of the system states with respect to the model parameters. The paper takes advantage of a recently-developed non-parametric estimator of the Fisher information matrix and provides a method to determine the critical region of echo state networks, a particular class of recurrent networks. The considered control parameters, which indirectly affect the echo state network performance, are explored to identify those configurations lying on the edge of criticality and, as such, maximizing Fisher information and computational performance. Experimental results on benchmarks and real-world data demonstrate the effectiveness of the proposed method.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube