Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Adaptive Component-wise Multiple-Try Metropolis Sampling (1603.03510v2)

Published 11 Mar 2016 in stat.CO

Abstract: One of the most widely used samplers in practice is the component-wise Metropolis-Hastings (CMH) sampler that updates in turn the components of a vector valued Markov chain using accept-reject moves generated from a proposal distribution. When the target distribution of a Markov chain is irregularly shaped, a good' proposal distribution for one part of the state space might be apoor' one for another part of the state space. We consider a component-wise multiple-try Metropolis (CMTM) algorithm that can automatically choose from a set of candidate moves sampled from different distributions. The computational efficiency is increased using an adaptation rule for the CMTM algorithm that dynamically builds a better set of proposal distributions as the Markov chain runs. The ergodicity of the adaptive chain is demonstrated theoretically. The performance is studied via simulations and real data examples.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.