Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating practical linear temporal difference learning (1602.08771v2)

Published 28 Feb 2016 in cs.LG, cs.AI, and stat.ML

Abstract: Off-policy reinforcement learning has many applications including: learning from demonstration, learning multiple goal seeking policies in parallel, and representing predictive knowledge. Recently there has been an proliferation of new policy-evaluation algorithms that fill a longstanding algorithmic void in reinforcement learning: combining robustness to off-policy sampling, function approximation, linear complexity, and temporal difference (TD) updates. This paper contains two main contributions. First, we derive two new hybrid TD policy-evaluation algorithms, which fill a gap in this collection of algorithms. Second, we perform an empirical comparison to elicit which of these new linear TD methods should be preferred in different situations, and make concrete suggestions about practical use.

Citations (39)

Summary

We haven't generated a summary for this paper yet.