Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Single Model Explains both Visual and Auditory Precortical Coding (1602.08486v2)

Published 26 Feb 2016 in q-bio.NC, cs.CV, cs.LG, and cs.NE

Abstract: Precortical neural systems encode information collected by the senses, but the driving principles of the encoding used have remained a subject of debate. We present a model of retinal coding that is based on three constraints: information preservation, minimization of the neural wiring, and response equalization. The resulting novel version of sparse principal components analysis successfully captures a number of known characteristics of the retinal coding system, such as center-surround receptive fields, color opponency channels, and spatiotemporal responses that correspond to magnocellular and parvocellular pathways. Furthermore, when trained on auditory data, the same model learns receptive fields well fit by gammatone filters, commonly used to model precortical auditory coding. This suggests that efficient coding may be a unifying principle of precortical encoding across modalities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.