Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization (1602.08297v2)

Published 26 Feb 2016 in q-fin.PM and q-fin.MF

Abstract: The optimization of a large random portfolio under the Expected Shortfall risk measure with an $\ell_2$ regularizer is carried out by analytical calculation. The regularizer reins in the large sample fluctuations and the concomitant divergent estimation error, and eliminates the phase transition where this error would otherwise blow up. In the data-dominated region, where the number $N$ of different assets in the portfolio is much less than the length $T$ of the available time series, the regularizer plays a negligible role even if its strength $\eta$ is large, while in the opposite limit, where the size of samples is comparable to, or even smaller than the number of assets, the optimum is almost entirely determined by the regularizer. We construct the contour map of estimation error on the $N/T$ vs. $\eta$ plane and find that for a given value of the estimation error the gain in $N/T$ due to the regularizer can reach a factor of about 4 for a sufficiently strong regularizer.

Summary

We haven't generated a summary for this paper yet.