Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Globally Optimal Base Station Clustering in Interference Alignment-Based Multicell Networks (1602.08273v1)

Published 26 Feb 2016 in cs.IT and math.IT

Abstract: Coordinated precoding based on interference alignment is a promising technique for improving the throughputs in future wireless multicell networks. In small networks, all base stations can typically jointly coordinate their precoding. In large networks however, base station clustering is necessary due to the otherwise overwhelmingly high channel state information (CSI) acquisition overhead. In this work, we provide a branch and bound algorithm for finding the globally optimal base station clustering. The algorithm is mainly intended for benchmarking existing suboptimal clustering schemes. We propose a general model for the user throughputs, which only depends on the long-term CSI statistics. The model assumes intracluster interference alignment and is able to account for the CSI acquisition overhead. By enumerating a search tree using a best-first search and pruning sub-trees in which the optimal solution provably cannot be, the proposed method converges to the optimal solution. The pruning is done using specifically derived bounds, which exploit some assumed structure in the throughput model. It is empirically shown that the proposed method has an average complexity which is orders of magnitude lower than that of exhaustive search.

Citations (7)

Summary

We haven't generated a summary for this paper yet.