Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Inference of Diffusion Networks with Unknown Infection Times (1602.08114v3)

Published 25 Feb 2016 in cs.SI and physics.soc-ph

Abstract: The analysis of diffusion processes in real-world propagation scenarios often involves estimating variables that are not directly observed. These hidden variables include parental relationships, the strengths of connections between nodes, and the moments of time that infection occurs. In this paper, we propose a framework in which all three sets of parameters are assumed to be hidden and we develop a Bayesian approach to infer them. After justifying the model assumptions, we evaluate the performance efficiency of our proposed approach through numerical simulations on synthetic datasets and real-world diffusion processes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.