Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

A Griffith-Euler-Bernoulli theory for thin brittle beams derived from nonlinear models in variational fracture mechanics (1602.07594v1)

Published 24 Feb 2016 in math.AP and cond-mat.mtrl-sci

Abstract: We study a planar thin brittle beam subject to elastic deformations and cracks described in terms of a nonlinear Griffith energy functional acting on $SBV$ deformations of the beam. In particular we consider the case in which elastic bulk contributions due to finite bending of the beam are comparable to the surface energy which is necessary to completely break the beam into several large pieces. In the limit of vanishing aspect ratio we rigorously derive an effective Griffith-Euler-Bernoulli functional which acts on piecewise $W{2,2}$ regular curves representing the midline of the beam. The elastic part of this functional is the classical Euler-Bernoulli functional for thin beams in the bending dominated regime in terms of the curve's curvature. In addition there also emerges a fracture term proportional to the number of discontinuities of the curve and its first derivative.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)