Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stuck in a What? Adventures in Weight Space (1602.07320v1)

Published 23 Feb 2016 in cs.LG

Abstract: Deep learning researchers commonly suggest that converged models are stuck in local minima. More recently, some researchers observed that under reasonable assumptions, the vast majority of critical points are saddle points, not true minima. Both descriptions suggest that weights converge around a point in weight space, be it a local optima or merely a critical point. However, it's possible that neither interpretation is accurate. As neural networks are typically over-complete, it's easy to show the existence of vast continuous regions through weight space with equal loss. In this paper, we build on recent work empirically characterizing the error surfaces of neural networks. We analyze training paths through weight space, presenting evidence that apparent convergence of loss does not correspond to weights arriving at critical points, but instead to large movements through flat regions of weight space. While it's trivial to show that neural network error surfaces are globally non-convex, we show that error surfaces are also locally non-convex, even after breaking symmetry with a random initialization and also after partial training.

Citations (17)

Summary

We haven't generated a summary for this paper yet.