Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-degeneracy conditions for braided finite tensor categories (1602.06534v2)

Published 21 Feb 2016 in math.QA and math.CT

Abstract: For a braided finite tensor category $\mathcal{C}$ with unit object $1 \in \mathcal{C}$, Lyubashenko considered a certain Hopf algebra $\mathbb{F} \in \mathcal{C}$ endowed with a Hopf pairing $\omega: \mathbb{F} \otimes \mathbb{F} \to 1$ to define the notion of a `non-semisimple' modular tensor category. We say that $\mathcal{C}$ is non-degenerate if the Hopf pairing $\omega$ is non-degenerate. In this paper, we show that $\mathcal{C}$ is non-degenerate if and only if it is factorizable in the sense of Etingof, Nikshych and Ostrik, if and only if its M\"uger center is trivial, if and only if the linear map $\Omega: \mathrm{Hom}{\mathcal{C}}(1, \mathbb{F}) \to \mathrm{Hom}{\mathcal{C}}(\mathbb{F}, 1)$ induced by the pairing $\omega$ is invertible. As an application, we prove that the category of Yetter-Drinfeld modules over a Hopf algebra in $\mathcal{C}$ is non-degenerate if and only if $\mathcal{C}$ is.

Summary

We haven't generated a summary for this paper yet.