Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

A unified framework for spline estimators (1602.06318v1)

Published 19 Feb 2016 in math.ST and stat.TH

Abstract: This article develops a unified framework to study the asymptotic properties of all periodic spline-based estimators, that is, of regression, penalized and smoothing splines. The explicit form of the periodic Demmler-Reinsch basis in terms of exponential splines allows the derivation of an expression for the asymptotic equivalent kernel on the real line for all spline estimators simultaneously. The corresponding bandwidth, which drives the asymptotic behavior of spline estimators, is shown to be a function of the number of knots and the smoothing parameter. Strategies for the selection of the optimal bandwidth and other model parameters are discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.