Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New perspective on sampling-based motion planning via random geometric graphs (1602.05460v1)

Published 17 Feb 2016 in cs.RO, cs.CG, and math.PR

Abstract: Roadmaps constructed by many sampling-based motion planners coincide, in the absence of obstacles, with standard models of random geometric graphs (RGGs). Those models have been studied for several decades and by now a rich body of literature exists analyzing various properties and types of RGGs. In their seminal work on optimal motion planning Karaman and Frazzoli (2011) conjectured that a sampling-based planner has a certain property if the underlying RGG has this property as well. In this paper we settle this conjecture and leverage it for the development of a general framework for the analysis of sampling-based planners. Our framework, which we call localization-tessellation, allows for easy transfer of arguments on RGGs from the free unit-hypercube to spaces punctured by obstacles, which are geometrically and topologically much more complex. We demonstrate its power by providing alternative and (arguably) simple proofs for probabilistic completeness and asymptotic (near-)optimality of probabilistic roadmaps (PRMs). Furthermore, we introduce several variants of PRMs, analyze them using our framework, and discuss the implications of the analysis.

Citations (40)

Summary

We haven't generated a summary for this paper yet.