On flux vacua, SU(n)-structures and generalised complex geometry (1602.05415v2)
Abstract: Understanding supersymmetric flux vacua is essential in order to connect string theory to observable physics. In this thesis, flux vacua are studied by making use of two mathematical frameworks: SU(n)-structures and generalised complex geometry. Manifolds with SU(n)-structure are generalisations of Calabi-Yau manifolds. Generalised complex geometry is a geometrical framework that simultaneously generalises complex and symplectic geometry. Classes of flux vacua of type II supergravity and M-theory are given on manifolds with SU(4)-structure. The N= (1,1) type IIA vacua uplift to N=1 M-theory vacua, with four-flux that need not be (2,2) and primitive. Explicit vacua are given on Stenzel space, a non-compact Calabi-Yau. These are then generalised by constructing families of non-CY SU(4)-structures to find vacua on non-symplectic SU(4)-deformed Stenzel spaces. It is shown that the supersymmetry conditions for N = (2,0) type IIB can be rephrased in the language of generalised complex geometry, partially in terms of integrability conditions of generalised almost complex structures. This rephrasing for d=2 goes beyond the calibration equations, in contrast to d=4,6 where the calibration equations are equivalent to supersymmetry. Finally, Euclidean type II theory is examined on SU(5)-structure manifolds, where generalised equations are found which are necessary but not sufficient to satisfy the supersymmetry equations. Explicit classes of solutions are provided here as well. Contact with Lorentzian physics can be made by uplifting such solutions to d=1, N=1 M-theory.