Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

The time-dependent Hartree-Fock-Bogoliubov equations for Bosons (1602.05171v2)

Published 16 Feb 2016 in math-ph, math.AP, and math.MP

Abstract: In this article, we use quasifree reduction to derive the time-dependent Hartree-Fock-Bogoliubov (HFB) equations describing the dynamics of quantum fluctuations around a Bose-Einstein condensate in $\mathbb Rd$. We prove global well-posedness for the HFB equations for sufficiently regular pair interaction potentials, and establish key conservation laws. Moreover, we show that the solutions to the HFB equations exhibit a symplectic structure, and have a form reminiscent of a Hamiltonian system. In particular, this is used to relate the HFB equations to the HFB eigenvalue equations encountered in the physics literature. Furthermore, we construct the Gibbs states at positive temperature associated with the HFB equations, and establish criteria for the emergence of Bose-Einstein condensation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.