Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Practical Introduction to Clustering Data (1602.05124v1)

Published 16 Feb 2016 in physics.data-an, astro-ph.IM, cond-mat.stat-mech, and cs.LG

Abstract: Data clustering is an approach to seek for structure in sets of complex data, i.e., sets of "objects". The main objective is to identify groups of objects which are similar to each other, e.g., for classification. Here, an introduction to clustering is given and three basic approaches are introduced: the k-means algorithm, neighbour-based clustering, and an agglomerative clustering method. For all cases, C source code examples are given, allowing for an easy implementation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)