Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Quantum statistical mechanics in arithmetic topology (1602.04890v1)

Published 16 Feb 2016 in math-ph, math.GT, and math.MP

Abstract: This paper provides a construction of a quantum statistical mechanical system associated to knots in the 3-sphere and cyclic branched coverings of the 3-sphere, which is an analog, in the sense of arithmetic topology, of the Bost-Connes system, with knots replacing primes, and cyclic branched coverings of the 3-sphere replacing abelian extensions of the field of rational numbers. The operator algebraic properties of this system differ significantly from the Bost-Connes case, due to the properties of the action of the semigroup of knots on a direct limit of knot groups. The resulting algebra of observables is a noncommutative Bernoulli crossed product. We describe the main properties of the associated quantum statistical mechanical system and of the relevant partition functions, which are obtained from simple knot invariants like genus and crossing number.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.